Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446660

RESUMO

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Assuntos
Motivação , Transdução de Sinais , Camundongos , Masculino , Animais , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Tonsila do Cerebelo/metabolismo , Neuregulina-1/metabolismo
2.
Eur J Pharmacol ; 951: 175777, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182594

RESUMO

The adenosine A1 receptor plays important roles in tuning free fatty acid (FFA) levels and represents an attractive target for metabolic disorders. Though remarkable progress has been achieved in the exploitation of effective (orthosteric) A1 receptor agonists in modulating aberrant FFA levels, the effect of A1 receptor allosteric modulation on lipid homeostasis is less investigated. Herein we sought to explore the effect of an allosteric modulator on the action of an A1 receptor orthosteric agonist in regulating the lipolytic process in vitro and in vivo. We examined the binding kinetics of a selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) in the absence or presence of an allosteric modulator (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)-phenyl]methanone (PD81,723) on rat adipocyte membranes. We also examined the allosteric effects of PD81,723 on mediating the CCPA-induced inhibition of cAMP accumulation, HSL (hormone-sensitive lipase) phosphorylation and FFA production in in vitro and in vivo models. Our results demonstrated that PD81,723 slowed down the dissociation of CCPA from the A1 receptor, which, consequently, potentiated the antilipolytic action of CCPA through downregulating the cAMP/HSL pathway. Our study exemplified the application of A1 receptor allosteric modulators as an alternative for metabolic disease treatments.


Assuntos
Tecido Adiposo , Receptores Purinérgicos P1 , Ratos , Animais , Receptores Purinérgicos P1/metabolismo , Tecido Adiposo/metabolismo , Adipócitos , Lipólise , Adenosina/metabolismo , Receptor A1 de Adenosina/metabolismo , Regulação Alostérica
3.
Mol Psychiatry ; 28(3): 1027-1045, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-33990773

RESUMO

Dopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


Assuntos
Depressão , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Fosforilação , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
4.
Neuron ; 110(14): 2315-2333.e6, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35561677

RESUMO

Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.


Assuntos
Temperatura Alta , Neuregulina-1 , Neurônios , Sensação Térmica , Animais , Camundongos , Neuregulina-1/farmacologia , Neurônios/fisiologia , Receptor ErbB-4/genética
5.
BMC Biol ; 19(1): 264, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34903227

RESUMO

BACKGROUND: Ciliated protists are a widely distributed, morphologically diverse, and genetically heterogeneous group of unicellular organisms, usually known for containing two types of nuclei: a transcribed polyploid macronucleus involved in gene expression and a silent diploid micronucleus responsible for transmission of genetic material during sexual reproduction and generation of the macronucleus. Although studies in a few species of culturable ciliated protists have revealed the highly dynamic nature of replicative and recombination events relating the micronucleus to the macronucleus, the broader understanding of the genomic diversity of ciliated protists, as well as their phylogenetic relationships and metabolic potential, has been hampered by the inability to culture numerous other species under laboratory conditions, as well as the presence of symbiotic bacteria and microalgae which provide a challenge for current sequencing technologies. Here, we optimized single-cell sequencing methods and associated data analyses, to effectively remove contamination by commensal bacteria, and generated high-quality genomes for a number of Euplotia species. RESULTS: We obtained eight high-quality Euplotia genomes by using single-cell genome sequencing techniques. The genomes have high genomic completeness, with sizes between 68 and 125 M and gene numbers between 14K and 25K. Through comparative genomic analysis, we found that there are a large number of gene expansion events in Euplotia genomes, and these expansions are closely related to the phenotypic evolution and specific environmental adaptations of individual species. We further found four distinct subgroups in the genus Euplotes, which exhibited considerable genetic distance and relative lack of conserved genomic syntenies. Comparative genomic analyses of Uronychia and its relatives revealed significant gene expansion associated with the ciliary movement machinery, which may be related to the unique and strong swimming ability. CONCLUSIONS: We employed single-cell genomics to obtain eight ciliate genomes, characterized the underestimated genomic diversity of Euplotia, and determined the divergence time of representative species in this subclass for the first time. We also further investigated the extensive duplication events associated with speciation and environmental adaptation. This study provides a unique and valuable resource for understanding the evolutionary history and genetic diversity of ciliates.


Assuntos
Cilióforos , Genômica , Mapeamento Cromossômico , Cilióforos/genética , Evolução Molecular , Genômica/métodos , Macronúcleo/genética , Filogenia
6.
Transl Psychiatry ; 11(1): 361, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34226493

RESUMO

The precise control of the nervous system function under the vitality of synapses is extremely critical. Efforts have been taken to explore the underlying cellular and molecular mechanisms for synapse formation. Cell adhesion molecules have been found important for synapse assembly in the brain. Many trans-adhesion complexes have been identified to modulate excitatory synapse formation. However, little is known about the synaptogenic mechanisms for inhibitory synapses. ErbB4 is a receptor tyrosine kinase enriched in interneurons. Here, we showed that overexpressing ErbB4 in HEK293T cells induced gephyrin or GABAAR α1 puncta in co-cultured primary hippocampal neurons. This induction of ErbB4 was independent of its kinase activity. K751M, a kinase-dead mutant of ErbB4, can also induce gephyrin or GABAAR α1 puncta in the co-culture system. We further constructed K751M knock-in mice and found that the homozygous were viable at birth and fertile without changes in gross brain structure. The number of interneurons and inhibitory synapses onto pyramidal neurons (PyNs) were comparable between K751M and wild-type mice but decreased in ErbB4-Null mice. Moreover, ErbB4 can interact in trans with Slitrk3, a transmembrane postsynaptic protein at inhibitory synapses, through the extracellular RLD domain of ErbB4. The deletion of RLD diminished the induction of gephyrin or GABAAR α1 puncta by ErbB4. Finally, disruption of ErbB4-Slitrk3 interaction through neutralization of Slitrk3 by secretable RLD decreased inhibitory synapses onto PyNs and impaired GABAergic transmission. These results identify that ErbB4, as a cell adhesion molecule, promotes inhibitory synapse formation onto PyNs by interacting with Slitrk3 and in a kinase-independent manner, providing an unexpected mechanism of ErbB4 in inhibitory synapse formation.


Assuntos
Neurogênese , Sinapses , Animais , Adesão Celular , Células HEK293 , Hipocampo , Humanos , Camundongos , Receptor ErbB-4/genética
7.
ACS Pharmacol Transl Sci ; 4(2): 687-702, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860194

RESUMO

Triple-negative breast cancer (TNBC) has limited treatment options and the worst prognosis among all types of breast cancer. We describe two prodrugs, namely, CWB-20145 (1) and its methyl analogue FAN-NM-CH3 (2) that reduced the size of TNBC-derived tumors. The DNA cross-linking of nitrogen mustard prodrugs 1 and 2 was superior to that of chlorambucil and melphalan once activated in the presence of H2O2. The cellular toxicity of 1 and 2 was demonstrated in seven human cancer cell lines. The TNBC cell line MDA-MB-468 was particularly sensitive toward 1 and 2. Compound 2 was 10 times more cytotoxic than chlorambucil and 16 times more active than melphalan. An evaluation of the gene expression demonstrated an upregulation of the tumor suppressor genes p53 and p21 supporting a transcriptional mechanism of a reduced tumor growth. Pharmacokinetic studies with 1 showed a rapid conversion of the prodrug. The introduction of a methyl group generated 2 with an increased half-life. An in vivo toxicity study in mice demonstrated that both prodrugs were less toxic than chlorambucil. Compounds 1 and 2 reduced tumor growth with an inhibition rate of more than 90% in athymic nude mice xenografted with MDA-MB-468 cells. Together, the in vivo investigations demonstrated that treatment with 1 and 2 suppressed tumor growth without affecting normal tissues in mice. These phenylboronic acid nitrogen mustard prodrugs represent promising drug candidates for the treatment of TNBC. However, the mechanisms underlying their superior in vivo activity and selectivity as well as the correlation between H2O2 level and in vivo efficacy are not yet fully understood.

8.
Front Microbiol ; 10: 2127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572333

RESUMO

Microlunatus phosphovorus NM-1 is a polyphosphate (poly-P)-accumulating bacterium that accumulates poly-P under aerobic conditions and degrades poly-P under anaerobic conditions. In this study, the two-component system (TCS) PolS-PolR was identified in NM-1, and the response regulator PolR was found to directly bind to the promoters of genes related to phosphate transport (MLP_RS00235, MLP_RS23035, and MLP_RS24590); poly-P catabolism (MLP_RS12905) and poly-P synthesis (MLP_RS23025). RT-qPCR assays showed that ppgk (MLP_RS12905), ppk (MLP_RS23025), pstS (MLP_RS23035), and pit (MLP_RS24590) were down-regulated during the aerobic-anaerobic shift. The sequence GTTCACnnnnnGTTCaC was identified as a recognition sequence for PolR by MEME analysis and DNase I footprinting. EMSAs and ChIP-qPCR assays indicated that PolR binds to the promoters of pit (MLP_RS00235), ppgk (MLP_RS12905), ppk (MLP_RS23025), pstS (MLP_RS23035) and pit (MLP_RS24590), and ChIP-qPCR further suggested that the binding affinity of PolR was lower under anaerobic conditions than under aerobic conditions in vivo. These findings indicate that the PolS-PolR TCS in M. phosphovorus may be involved in the regulation of poly-P metabolism in response to levels of dissolved oxygen in the environment, and our results provide insights into new approaches for understanding the mechanisms of phosphorus accumulation and release.

9.
Biochem Pharmacol ; 164: 45-52, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30905656

RESUMO

Elevated circulating free fatty acid (FFA) level is closely linked to the pathogenesis of insulin resistance and type 2 diabetes mellitus. Activation of the adenosine A1 receptor (A1R) inhibits lipolysis in adipocytes and hence reduces the concentration of FFA, which represents a potential target for the development of antilipolytic agents. We aimed to assess the binding affinity as well as target binding kinetics of A1R agonists and further delineate a possible relationship with their antilipolytic effect in adipocytes. Radioligand binding assays were performed to determine the affinity and kinetics of three representative A1R agonists, namely CPA, LUF6944 and LUF6941, on the rat A1R. Functional responses to these agonists were examined in both a recombinant cell system and physiologically relevant rat adipocytes. The three A1R agonists displayed similar affinity while divergent target binding kinetics on the rat A1R. Irrespective of equilibrium binding affinity, temporal analysis of receptor signaling demonstrated persistent functional responses for the long residence time agonist, despite removal of excess agonist, in both a recombinant cell system and in rat adipocytes. By contrast, such effect was less pronounced or even lost for agonists with medium or short receptor residence time, respectively. Our results indicate that ligand receptor binding kinetics rather than their affinity or potency play an essential role in regulating cellular responses. The long residence time A1R agonist produces a sustained wash-resistant antilipolytic effect in rat adipocytes and thus may represent a potential antilipolytic alternative for further investigation.


Assuntos
Agonistas do Receptor A1 de Adenosina/administração & dosagem , Agonistas do Receptor A1 de Adenosina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Lipólise/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/metabolismo , Relação Dose-Resposta a Droga , Lipólise/fisiologia , Ratos
10.
Proc Natl Acad Sci U S A ; 115(51): 13105-13110, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498032

RESUMO

Neurotrophic factor NRG1 and its receptor ErbB4 play a role in GABAergic circuit assembly during development. ErbB4 null mice possess fewer interneurons, have decreased GABA release, and show impaired behavior in various paradigms. In addition, NRG1 and ErbB4 have also been implicated in regulating GABAergic transmission and plasticity in matured brains. However, current ErbB4 mutant strains are unable to determine whether phenotypes in adult mutant mice result from abnormal neural development. This important question, a glaring gap in understanding NRG1-ErbB4 function, was addressed by using two strains of mice with temporal control of ErbB4 deletion and expression, respectively. We found that ErbB4 deletion in adult mice impaired behavior and GABA release but had no effect on neuron numbers and morphology. On the other hand, some deficits due to the ErbB4 null mutation during development were alleviated by restoring ErbB4 expression at the adult stage. Together, our results indicate a critical role of NRG1-ErbB4 signaling in GABAergic transmission and behavior in adulthood and suggest that restoring NRG1-ErbB4 signaling at the postdevelopmental stage might benefit relevant brain disorders.


Assuntos
Comportamento Animal , Encéfalo/patologia , Interneurônios/patologia , Neuregulina-1/metabolismo , Receptor ErbB-4/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
11.
J Med Chem ; 61(20): 9132-9145, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30247905

RESUMO

We describe several new aromatic nitrogen mustards with various aromatic substituents and boronic esters that can be activated with H2O2 to efficiently cross-link DNA. In vitro studies demonstrated the anticancer potential of these compounds at lower concentrations than those of other clinically used chemotherapeutics, such as melphalan and chlorambucil. In particular, compound 10, bearing an amino acid ester chain, is selectively cytotoxic toward breast cancer and leukemia cells that have inherently high levels of reactive oxygen species. Importantly, 10 was 10-14-fold more efficacious than melphalan and chlorambucil for triple-negative breast-cancer (TNBC) cells. Similarly, 10 is more toxic toward primary chronic-lymphocytic-leukemia cells than either chlorambucil or the lead compound, 9. The introduction of an amino acid side chain improved the solubility and permeability of 10. Furthermore, 10 inhibited the growth of TNBC tumors in xenografted mice without obvious signs of general toxicity, making this compound an ideal drug candidate for clinical development.


Assuntos
Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Desenho de Fármacos , Peróxido de Hidrogênio/metabolismo , Compostos de Mostarda Nitrogenada/metabolismo , Compostos de Mostarda Nitrogenada/farmacologia , Antineoplásicos Alquilantes/química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Ésteres/química , Humanos , Compostos de Mostarda Nitrogenada/química
12.
J Neurosci ; 38(44): 9600-9613, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30228230

RESUMO

Fear learning and memory are vital for livings to survive, dysfunctions in which have been implicated in various neuropsychiatric disorders. Appropriate neuronal activation in amygdala is critical for fear memory. However, the underlying regulatory mechanisms are not well understood. Here we report that Neogenin, a DCC (deleted in colorectal cancer) family receptor, which plays important roles in axon navigation and adult neurogenesis, is enriched in excitatory neurons in BLA (Basolateral amygdala). Fear memory is impaired in male Neogenin mutant mice. The number of cFos+ neurons in response to tone-cued fear training was reduced in mutant mice, indicating aberrant neuronal activation in the absence of Neogenin. Electrophysiological studies show that Neogenin mutation reduced the cortical afferent input to BLA pyramidal neurons and compromised both induction and maintenance of Long-Term Potentiation evoked by stimulating cortical afferent, suggesting a role of Neogenin in synaptic plasticity. Concomitantly, there was a reduction in spine density and in frequency of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents, suggesting a role of Neogenin in forming excitatory synapses. Finally, ablating Neogenin in the BLA in adult male mice impaired fear memory likely by reducing mEPSC frequency in BLA excitatory neurons. These results reveal an unrecognized function of Neogenin in amygdala for information processing by promoting and maintaining neurotransmission and synaptic plasticity and provide insight into molecular mechanisms of neuronal activation in amygdala.SIGNIFICANCE STATEMENT Appropriate neuronal activation in amygdala is critical for information processing. However, the underlying regulatory mechanisms are not well understood. Neogenin is known to regulate axon navigation and adult neurogenesis. Here we show that it is critical for neurotransmission and synaptic plasticity in the amygdala and thus fear memory by using a combination of genetic, electrophysiological, behavioral techniques. Our studies identify a novel function of Neogenin and provide insight into molecular mechanisms of neuronal activation in amygdala for fear processing.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo/fisiologia , Aprendizagem/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
13.
Elife ; 72018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30113308

RESUMO

The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Unlike extensively investigated postsynaptic differentiation, less is known about mechanisms of presynaptic assembly. Genetic evidence of Wnt in mammalian NMJ development was missing due to the existence of multiple Wnts and their receptors. We show when Wnt secretion is abolished from motoneurons by mutating the Wnt ligand secretion mediator (Wls) gene, mutant mice showed muscle weakness and neurotransmission impairment. NMJs were unstable with reduced synaptic junctional folds and fragmented AChR clusters. Nerve terminals were swollen; synaptic vesicles were fewer and mislocated. The presynaptic deficits occurred earlier than postsynaptic deficits. Intriguingly, these phenotypes were not observed when deleting Wls in muscles or Schwann cells. We identified Wnt7A and Wnt7B as major Wnts for nerve terminal development in rescue experiments. These observations demonstrate a necessary role of motoneuron Wnts in NMJ development, in particular presynaptic differentiation.


Assuntos
Neurônios Motores/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética , Animais , Diferenciação Celular/genética , Camundongos , Neurônios Motores/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Mutação , Junção Neuromuscular/genética , Neurônios Eferentes/metabolismo , Receptores Colinérgicos/genética , Células de Schwann/citologia , Células de Schwann/metabolismo , Sinapses/genética , Via de Sinalização Wnt
14.
Cell Rep ; 23(3): 909-917, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669294

RESUMO

The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/patologia , Substituição de Aminoácidos , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , China/epidemiologia , Surtos de Doenças , Evolução Molecular , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/virologia , Proteínas do Nucleocapsídeo , Filogenia , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Proteínas do Core Viral/classificação , Proteínas do Core Viral/genética , Proteínas Virais/classificação , Proteínas Virais/genética
15.
Neuroscience ; 373: 113-121, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339325

RESUMO

Myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction (NMJ). Most cases of MG are caused by autoantibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) and low-density lipoprotein receptor-related protein 4 (LRP4). Recent studies have identified anti-agrin antibodies in MG patients lacking these three antibodies (i.e., triple negative MG). Agrin is a basal lamina protein that has two isoforms. Neural agrin (N-agrin) binds to LRP4 to activate MuSK to induce AChR clusters and is thus critical for NMJ formation. We demonstrate that mice immunized with N-agrin showed MG-associated symptoms including muscle weakness, fragmented and distorted NMJs. These effects were not observed in mice injected with muscle agrin (M-agrin), an isoform that is inactive in inducing AChR clusters. Treatment with anti-N-agrin, but not anti-M-agrin, antibodies reduced agrin-induced AChR clusters in muscle cells. Together, these observations suggest that agrin antibodies may be play a role in MG pathogenesis.


Assuntos
Agrina/imunologia , Autoanticorpos/biossíntese , Miastenia Gravis/imunologia , Animais , Modelos Animais de Doenças , Escherichia coli , Feminino , Imunização , Camundongos , Força Muscular/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miastenia Gravis/patologia , Junção Neuromuscular/imunologia , Junção Neuromuscular/patologia , Isoformas de Proteínas/imunologia , Receptores Colinérgicos/metabolismo , Proteínas Recombinantes/imunologia
16.
Eur J Med Chem ; 133: 197-207, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28388522

RESUMO

Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , DNA/química , Peróxido de Hidrogênio/metabolismo , Indolquinonas/farmacologia , Substâncias Intercalantes/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Sequência de Bases/efeitos dos fármacos , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Humanos , Indolquinonas/química , Indolquinonas/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
17.
Sci China Life Sci ; 60(3): 279-286, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27921234

RESUMO

Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.


Assuntos
Metagenômica , Pneumonia Viral/diagnóstico , Vírus/isolamento & purificação , Adenoviridae/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Biologia Computacional , Enterovirus/isolamento & purificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Vírus do Sarampo/isolamento & purificação , Pessoa de Meia-Idade , Filogenia , Pneumonia Viral/virologia , Rhinovirus/isolamento & purificação , Vírus/classificação , Adulto Jovem
18.
Emerg Microbes Infect ; 5(7): e73, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436363

RESUMO

H6 avian influenza viruses (AIVs), which are prevalent in domestic and wild birds in Eurasian countries, have been isolated from pigs, a dog and a human. Routine virological surveillance at live poultry markets or poultry farms was conducted in southern China from 2009 to 2011. This study investigated the genetic and antigenic characteristics, analyzed the receptor-binding properties and evaluated the kinetics of infectivity of the AIVs in A549, MDCK and PK15 cells. A total of 14 H6N6 and 2 H6N2 isolates were obtained from four provinces in southern China. Genetic analysis indicated two distinct hemagglutinin lineages of the H6 strains cocirculating in southern China, and these strains facilitated active evolution and reassortment among multiple influenza virus subtypes from different avian species in nature. None of these isolates grouped with the novel Taiwan H6N1 virus responsible for human infection. Receptor-binding specificity assays showed that five H6 AIVs may have acquired the ability to recognize human receptors. Growth kinetics experiments showed that EV/HB-JZ/02/10(H6N2) and EV/JX/15/10(H6N6) initially reproduced faster and achieved higher titers than other viruses, suggesting that enhanced binding to α-2,6-linked sialic acids correlated with increased viral replication in mammalian cells. Overall, the results emphasize the need for continued surveillance of H6 outbreaks and extensive characterization of H6 isolates to better understand genetic changes and their implications.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Filogenia , Replicação Viral/genética , Animais , Antígenos Virais/genética , Aves/virologia , Linhagem Celular Tumoral , China/epidemiologia , Surtos de Doenças , Monitoramento Epidemiológico , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Neuraminidase/genética , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Taiwan/epidemiologia , Ligação Viral , Replicação Viral/fisiologia
19.
Chemistry ; 20(24): 7410-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24806710

RESUMO

Three novel H2O2-activated aromatic nitrogen mustard prodrugs (6-8) are reported. These compounds contain a DNA alkylating agent connected to a H2O2-responsive trigger by different electron-withdrawing linkers so that they are inactive towards DNA but can be triggered by H2O2 to release active species. The activity and selectivity of these compounds towards DNA were investigated by measuring DNA interstrand cross-link (ICL) formation in the presence or absence of H2O2. An electron-withdrawing linker unit, such as a quaternary ammonia salt (6), a carboxyamide (7), and a carbonate group (8), is sufficient to deactivate the aromatic nitrogen mustard resulting in less than 1.5 % cross-linking formation. However, H2O2 can restore the activity of the effectors by converting a withdrawing group to a donating group, therefore increasing the cross-linking efficiency (>20 %). The stability and reaction sites of the ICL products were determined, which revealed that alkylation induced by 7 and 8 not only occurred at the purine sites but also at the pyrimidine site. For the first time, we isolated and characterized the monomer adducts formed between the canonical nucleosides and the aromatic nitrogen mustard (15) which supported that nitrogen mustards reacted with dG, dA, and dC. The activation mechanism was studied by NMR spectroscopic analysis. An in vitro cytotoxicity assay demonstrated that compound 7 with a carboxyamide linker dramatically inhibited the growth of various cancer cells with a GI50 of less than 1 µM, whereas compound 6 with a charged linker did not show any obvious toxicity in all cell lines tested. These data indicated that a neutral carboxyamide linker is preferable for developing nitrogen mustard prodrugs. Our results showed that 7 is a potent anticancer prodrug that can serve as a model compound for further development. We believe these novel aromatic nitrogen mustards will inspire further and effective applications.


Assuntos
DNA/química , Pró-Fármacos/química , Reagentes de Ligações Cruzadas , Humanos , Compostos de Mostarda Nitrogenada
20.
J Med Chem ; 57(11): 4498-510, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24801734

RESUMO

Reducing host toxicity is one of the main challenges of cancer chemotherapy. Many tumor cells contain high levels of ROS that make them distinctively different from normal cells. We report a series of ROS-activated aromatic nitrogen mustards that selectively kill chronic lymphocytic leukemia (CLL) over normal lymphocytes. These agents showed powerful DNA cross-linking abilities when coupled with H2O2, one of the most common ROS in cancer cells, whereas little DNA cross-linking was detected without H2O2. Consistent with chemistry observation, in vitro cytotoxicity assay demonstrated that these agents induced 40-80% apoptosis in primary leukemic lymphocytes isolated from CLL patients but less than 25% cell death to normal lymphocytes from healthy donors. The IC50 for the most potent compound (2) was ~5 µM in CLL cells, while the IC50 was not achieved in normal lymphocytes. Collectively, these data provide utility and selectivity of these agents that will inspire further and effective applications.


Assuntos
Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Linfócitos/efeitos dos fármacos , Compostos de Mostarda Nitrogenada/química , Pró-Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos/citologia , Compostos de Mostarda Nitrogenada/metabolismo , Compostos de Mostarda Nitrogenada/farmacologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA